Модель горячей вселенной. Эволюция Вселенной

Модель горячей вселенной. Эволюция Вселенной

Гамов Георгий Антонович   Американский физик Георгий Антонович Гамов в 1946 году заложил основы одной из фундаментальных концепций современной космологии — модели «горячей Вселенной».

    В этой модели основное внимание переносится на состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным.
    С построением моделей «горячей Вселенной» в космологии наряду с законами тяготения активно применяются законы термодинамики, данные ядерной физики и физики элементарных частиц. Возникает релятивистская астрофизика.
    Модель горячей Вселенной получила эмпирическое подтверждение в 1965 году в открытии реликтового излучения американскими учеными Пензиасом и Уилсоном.
    Реликтовое излучение — одна из составляющих общего фона космического электромагнитного излучения. Реликтовое излучение равномерно распределено по небесной сфере и по интенсивности соответсвует тепловому излучению абсолютно черного тела при температкур около 3К.
    Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали высокой плотностью и температурой. В ходе космологического расширения Вселенной эта температура падала. При достижении температуры около 4000 К произошла рекомбинация протонов и электронов, после чего равновесие образовавшегося вещества (водорода и гелия) с излучением нарушилось — кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила около 3К. Таким образом, это излучение сохранилось до наших дней как реликт от эпохи рекомбинации и образования нейтральных атомов водорода и гелия. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим взрывом.
    В основе современной космологии лежат представления об однородности и изотропности Вселенной: во Вселенной нет каких-либо выделенных точек и направлений, т.е. все точки и направления равноправны. Это утверждение об однородности и изотропности Вселенной часто называют космологическим постулатом.
    В теории однородной изотропной Вселенной оказываются возможными две модели Вселенной: открытая и замкнутая.
    В открытой модели кривизна трехмерного пространства отрицательна или (в пределе) равна нулю, Вселенная бесконечна; в такой модели рассотяния между скоплениями галактик со временем неограниченно возрастают.
    В замкнутой модели кривизна пространства положительна, Вселенная конечна (но так же безгранична, как и в открытой модели); в такой модели расширение со временем сменяется сжатием.
    На основании имеющихся наблюдательных данных нельзя сделать никакого выбора между открытой и замкнутой моделями. Эта неопределнность никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (длительность расширения) — величину не достаточно определенную по данным наблюдений.
    В моделях однородной изотропной Вселенной выделяется ее особое начальное состояние — сингулярность. Это состояние характеризуется огромной плотностью массы и кривизной пространства. С сингулярности начинается взрывное, замедляющееся со временем расширение.
    Значение постоянной Хаббла (вернее, параметра Хаббла) определяет время, истекшее с начала расширения Вселенной, которое сейчас оценивается в 10-20 млрд. лет.
    Современная космология рисует картину Вселенной вблизи сингулярности. В условиях очень высокой температуры вблизи сингулярности не могли существовать не только молекулы и атомы, но даже и атомные ядра; существовала лишь равновесная смесь разных элементарных частиц.
    Уравнения современной космологии позволяют найти закон расширения однородной и изотропной Вселенной и описать изменение ее физических параметров в процессе расширения.
    Из этих уравнений следует, что начальные высокие плотность и температура быстро падали.
    Общие законы физики надежно проверены при ядерных плотностях, а такую плотность Вселенная имеет спустя 10-4с от начала расширения. Следовательно, с этого времени от состояния сингулярности физические свойства эволюционирующей Вселенной вполне поддаются изучению (в ряде случаев эту границу отодвигают непосредственно к сингулярности).
    В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть самую начальную сверхплотную стадию расширения Вселенной, которая завершилась уже к моменту t около 10-36 с. Эту стадию расширения Вселенной назвали инфляционной. На этой стадии, когда температура была невероятно высока (больше 1028 К), Вселенная расширялась с ускорением, а энергия в единице объема оставалась постоянной.
    До момента рекомбинации, который наступил примерно через миллион лет после начала расширения, Вселенная была непрозрачной для квантов света. Поэтому с помощью электромагнитного излучения нельзя заглянуть в эпоху, предшествующую рекомбинации. На сегодняшний день это можно сделать с помощью теоретических моделей.
    Вначале расширения Вселенной ее температура была столь высока, что энергии фотонов хватало для рождения пар всех известных частиц и античастиц. При температуре 1013 К во Вселенной рождались и гибли (аннигилировали) пары различных частиц и их античастиц. При понижении температуры до 5х1012 К почти все протоны и нейтроны аннигилировали, превратившись в кванты излучения; остались только те из них, для которых «не хватило» античастиц. Фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы. Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную долю (одну миллиардную) от их общего числа. Именно из этих «избыточных» протонов и нейтронов в основном состоит вещество современной наблюдаемой Вселенной.
    При температуре 2х1010 К с веществом перестали взаимодействовать нейтрино — от этого момента должен был остаться «реликтовый фон нейтрино», обнаружить который, возможно, удастся в будущем.
    Спустя несколько секунд после начала расширения Вселенной началась эпоха, когда образовались ядра дейтерия, гелия, лития и бериллия — эпоха первичного нуклеосинтеза. Продолжалась эта эпоха приблизительно 3 минуты. Ее результатом в основном стало образование ядер гелия. Остальные элементы, более тяжелые, чем гелий, составили ничтожно малую часть вещества.
    Определение химического состава (особенно содержание гелия, дейтерия и лития) самых старых звезд и межзвездной среды молодых галактик является одним из способов проверки выводов теории горячей Вселенной.
    После эпохи нуклеосинтеза (t около 3 мин.) и до эпохи рекомбинации (t около 106 лет) происходило спокойное расширение и остывание Вселенной. 

В статье Новый вариант большого взрыва и новый 1000 вопрос рассматривается очень красивая и интересное, но по своей сущности весьма фантастическая идея.

Модель горячей вселенной. Эволюция Вселенной: 1 комментарий

  1. Никакого расширения и сужения во вселенной нет,так же как нет на это не одной доказательной логике-Полная фантазия.

    [Ответить]

Обсуждение закрыто.

Обсуждение закрыто.
777