Phoenix Criminal Lawyer
августа 30, 2009

 


 


Общаятеория относительности (ОТО) — физическая теория пространства-времени и тяготения, основана на экспериментальном принципе эквивалентности гравитационной и инерционной масс и предположении о линейности связи между массой и вызываемыми ею гравитационными эффектами.
Albert_Einstein

В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты вызываются не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а являются проявлениями деформаций самого пространства-времени, вызываемых локальным присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация — не силовое взаимодействие.

Основные принципы общей теории относительности без математики

Необходимость релятивистской теории гравитации

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой — она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики, и, в частности, со специальной теорией относительности, выведенной Эйнштейном, Пуанкаре и Лоренцом в 1905 году. Действительно, в этой теории никакая информация не может распространиться быстрее скорости света в вакууме.

Но не надо забывать, что Эйнштейновская теория это лишь способ представления окружающего мира — теория, а как оно на самом деле, есть ли сущности двигающиеся быстрее света или нет, никому не известно. Хотя сравнивать скорости это тоже понятие относительное. можно сказать есть классическое сравнение (объект А двигается быстрее В потому, что до точки С, А был от неё левее чем В, а после точки С, объект А правее чем В), и релятивистское (объект А движется с тойже скоростью, что и В, а точка С движется в искривленном пространстве, так, что расстояние до А увеличивается быстрее чем, расстояние до В).

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности лежит в том, что энергия в специальной теории относительности уже не является скалярной величиной, а переходит во временну?ю компоненту 4-вектора. Векторная же теория гравитации оказывается вполне аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды — массы — в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теорией относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам.

С принципом инвариантности законов природы, универсальный характер которого был предположен Эйнштейном, этот учёный предпринял «поход за святым Граалем» — теорией гравитации, которая бы была совместима с ним. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс
В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

        Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 103. В конце XIX века более тонкие эксперименты провёл Этвеш, доведя точность проверки принципа до 109. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 1012 — 1013.

Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям
Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а, следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по кратчайшим (в некотором смысле) траекториям — геодезическим линиям. Теория геодезических линий была разработана математиками ранее, ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени расстояние между двумя событиями, называемое по традиции интервалом или мировой функцией. Интервал задаётся 10 величинами, составляющими так называемый метрический тензор или метрику. Он определяет расстояние между двумя бесконечно близкими точками пространства-времени в различных направлениях.

Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Кривизна пространства-времени

091
 Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) вызывается кривизной мембраны.

krivizna

Подобно описанному примеру, в пространстве-времени девиация геодезических — расхождение траекторий тел — вызывается его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно в способе связи между материей — телами, создающими гравитационное поле — и метрическими свойствами пространства-времени.

 Пространство-время ОТО и сильный принцип эквивалентности
Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который обычно формулируют так:

«Достаточно малая по размерам физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности».

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в самой окончательной форме теории он на самом деле не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривленным — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел.

Ещё раз подчеркнём: основным отличием пространства-времени общей теории относительности от пространства-времени специальной теории относительности является его искривление, кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени специальной теории относительности этот тензор тождественно равен нулю и пространство-время является плоским.

Аналогичным образом не совсем корректным является и само название «общая теория относительности». Она является лишь одной из множества теорий гравитации, рассматриваемых физиками сейчас, в то время как специальная теория относительности является практически общепринятой научным сообществом и составляет краеугольный камень базиса современной физики.

Уравнения Эйнштейна
Уравнения Эйнштейна связывают между собой свойства материи, заполняющей искривлённое пространство-время, с его кривизной. При этом они являются простейшими и наиболее линейными среди всех мыслимых уравнений такого рода. Выглядят они так:

 092

где Rab — тензор Риччи, получающийся из тензора кривизны пространства-времени Rabcd посредством свёртки его по паре индексов, R — скалярная кривизна, то есть свёрнутый тензор Риччи, gab — метрический тензор, ? — космологическая постоянная, а Tab представляет собой тензор энергии-импульса материи, (? — число пи, c — скорость света в вакууме, G — гравитационная постоянная Ньютона).

Эти уравнения наиболее просты в том смысле, что кривизна и энергия-импульс в них входит лишь линейно, а кроме того, в левой части стоят все тензорные величины валентности 2, которые могут характеризовать пространство-время.

Некоторое время дискутировался вопрос о наличии в этих уравнениях третьего члена в левой части — о равенстве космологической постоянной нулю. Данные современной количественной космологии говорят в пользу модели Вселенной, расширяющейся с ускорением, то есть с положительной космологической постоянной, не равной нулю. Тем не менее, величина этой постоянной настолько мала, что позволяет её не учитывать в любых физических расчётах, кроме связанных с астрофизикой в масштабах скоплений галактик и выше.

Существенным моментом является то, что уравнения Эйнштейна нелинейны и сумма их решений не является новым решением. Это связано с тем, что кривизна нелинейно зависит от метрических коэффициентов (см. определение тензора кривизны). Приближённо линейность существует лишь для слабых гравитационных полей, когда отклонения метрических коэффициентов от их значений для плоского пространства-времени малы, и так же мала кривизна.

Дополнительное обстоятельство, затрудняющее решение этих уравнений — их самосогласованность. Уравнения Эйнштейна связывают изменения метрических коэффициентов пространства-времени, то есть его искривление, с содержащейся в нем материей, но материя в свою очередь должна двигаться в искривлённом пространстве. Получаем замкнутый круг: материя в своём движении искривляет пространство, которое заставляет в свою очередь материю двигаться определённым образом, из-за чего материя по-другому искривляет пространство, которое опять корректирует движение материи, и так далее до бесконечности. Поэтому поиск решений превращается в игру в рулетку: задавшись определённым исходным состоянием материи, мы рискуем обнаружить, что она не может находиться в таком состоянии, когда решим уравнения Эйнштейна. Именно поэтому такое значение придаётся известным точным решениям этих уравнений.

 Основные следствия ОТО
Согласно с принципом соответствия в слабых гравитационных полях предсказания общей теории относительности воспроизводят результаты применения Ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля. Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:

Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями по механике Ньютона.

Отклонение светового луча в гравитационном поле Солнца.
Гравитационное красное смещение или, что то же самое, замедление времени в гравитационном поле.

Кроме них, существует множество эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих общую теорию относительности, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1 % (для указанных выше трёх классических явлений). Тем не менее, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём, некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

 

Комментировать